Investigadores de la Universidad de Brown han descubierto que la geometría de las redes de fallas, más que solo la fricción en las líneas de falla, influye significativamente en la ocurrencia y la intensidad de los terremotos. Crédito: SciTechDaily.com
Los investigadores de la Universidad de Brown descubrieron que la geometría de las fallas, incluidas las desalineaciones y las estructuras complejas dentro de las zonas de fallas, juega un papel crucial en la determinación de la probabilidad y la fuerza de los terremotos. Este hallazgo, basado en estudios de fallas en California, desafía las opiniones tradicionales que se centran principalmente en la fricción.
Al examinar de cerca la composición geométrica de las rocas que causan los terremotos, los investigadores de la Universidad de Brown están añadiendo un nuevo giro a una creencia arraigada sobre la causa inicial de los terremotos.
Repensar la dinámica de los terremotos
La investigación, descrita en un artículo publicado recientemente en la revista Naturaleza, revela que la forma en que se alinean las redes de fallas juega un papel crítico a la hora de determinar dónde ocurrirá un terremoto y qué tan fuerte será. Los resultados desafían la noción más tradicional de que es principalmente el tipo de fricción que ocurre en estas fallas lo que determina si los terremotos ocurren o no, y podrían mejorar la comprensión actual de cómo funcionan los terremotos en la Tierra.
«Nuestro artículo presenta una imagen muy diferente de por qué ocurren los terremotos», dijo el geofísico de Brown Victor Tsai, uno de los autores principales del artículo. «Y esto tiene implicaciones muy importantes para saber dónde esperar terremotos y dónde no esperarlos, así como para predecir dónde ocurrirán los terremotos más devastadores».
Puntos de vista tradicionales sobre la mecánica de terremotos.
Las líneas de falla son los límites visibles en la superficie del planeta donde las placas rígidas que forman la litosfera de la Tierra se rozan entre sí. Tsai dice que durante décadas, los geofísicos han explicado que los terremotos ocurren cuando las tensiones en las fallas se acumulan hasta el punto en que las fallas se deslizan o rompen rápidamente una encima de la otra, liberando la presión acumulada en una acción conocida como comportamiento de deslizamiento.
Los investigadores plantean la hipótesis de que el rápido deslizamiento y los intensos movimientos del suelo posteriores son el resultado de la fricción inestable que puede ocurrir en las fallas. Por el contrario, la idea es que cuando la fricción es estable, las placas se deslizan lentamente unas contra otras sin que se produzcan terremotos. Este movimiento fluido y constante también se conoce como fluencia.
Nuevas perspectivas sobre el comportamiento de la línea de falla
«La gente ha tratado de medir estas propiedades de fricción, por ejemplo, si la zona de la falla tiene fricción inestable o estable, y luego, basándose en mediciones de laboratorio, intentan predecir si habrá un terremoto allí o no», dijo Tsai. dicho. «Nuestros resultados sugieren que puede ser más relevante examinar la geometría de las fallas en estas redes de fallas, ya que puede ser la geometría compleja de las estructuras alrededor de estos límites la que crea este comportamiento inestable versus estable».
La geometría a considerar incluye las complejidades de las estructuras rocosas subyacentes, como curvas, huecos y tramos. El estudio se basa en el modelado matemático y la investigación de zonas de fallas en California utilizando datos del Servicio Geológico de EE. UU. y la Base de datos de fallas cuaternarias del Servicio Geológico de California.
Ejemplos detallados e investigaciones previas.
El equipo de investigación, que también incluye al estudiante graduado de Brown, Jaeseok Lee, y al geofísico de Brown, Greg Hirth, ofrece un ejemplo más detallado para ilustrar cómo ocurren los terremotos. Se dice que los defectos que se rozan entre sí tienen dientes dentados como el filo de una sierra.
Cuando hay menos dientes o dientes menos afilados, las rocas se deslizan unas sobre otras con más facilidad, lo que permite el deslizamiento. Pero cuando las estructuras rocosas de estas fallas son más complejas e irregulares, estas estructuras se adhieren unas a otras y se atascan. Cuando esto sucede, acumulan presión y eventualmente tiran y empujan cada vez más fuerte, se rompen, alejándose unos de otros y provocando terremotos.
Implicaciones de la complejidad geométrica
El nuevo estudio se basa en Trabajo anterior examinando por qué algunos terremotos generan más movimiento del suelo que otros terremotos en diferentes partes del mundo, a veces incluso aquellos de magnitud similar. El estudio demostró que la colisión de bloques dentro de una zona de falla durante un terremoto contribuye significativamente a la generación de vibraciones de alta frecuencia y generó la idea de que la complejidad geométrica debajo de la superficie también desempeñaba un papel en dónde y por qué ocurrían los terremotos.
Desalineación e intensidad del terremoto
Al analizar datos de las fallas de California, incluida la famosa falla de San Andrés, los investigadores descubrieron que las zonas de falla con una geometría compleja debajo, lo que significa que las estructuras no estaban tan alineadas, parecían tener movimientos del suelo más fuertes que las zonas de falla geométricamente menos complejas. zonas de falla. Esto también significa que algunas de estas áreas experimentarían terremotos más fuertes, otras experimentarían terremotos más débiles y otras no sufrirían ningún terremoto.
Los investigadores determinaron esto basándose en la desalineación promedio de las fallas analizadas. Esta tasa de desalineación mide qué tan estrechamente están alineadas las fallas en una determinada región y si todas van en la misma dirección en lugar de en muchas direcciones diferentes. El análisis reveló que las zonas de fallas donde las fallas están más desalineadas causan episodios de deslizamiento en forma de terremotos. Las zonas de falla donde la geometría de la falla estaba más alineada facilitaron un desplazamiento suave de la falla sin terremotos.
«Comprender cómo se comportan las fallas como sistema es esencial para comprender por qué y cómo ocurren los terremotos», dijo Lee, el estudiante graduado que dirigió el trabajo. «Nuestra investigación indica que la complejidad de la geometría de la red de fallas es el factor clave y establece conexiones significativas entre conjuntos de observaciones independientes y las integra en un nuevo marco».
Direcciones futuras en la investigación de terremotos
Los investigadores dicen que es necesario trabajar más para validar completamente el modelo, pero este trabajo inicial sugiere que la idea es prometedora, particularmente porque la alineación o desalineación de las fallas es más fácil de medir que las propiedades de fricción de las fallas. Si es válido, el trabajo algún día podría integrarse en modelos de predicción de terremotos.
Eso todavía está muy lejos por ahora, a medida que los investigadores comienzan a planear cómo aprovechar el estudio.
«Lo más obvio en el futuro es intentar ir más allá de California y ver cómo se mantiene ese modelo», dijo Tsai. «Esta es potencialmente una nueva forma de entender cómo ocurren los terremotos».
Referencia: “La geometría de la red de fallas influye en el comportamiento de fricción de los terremotos” por Jaeseok Lee, Victor C. Tsai, Greg Hirth, Avigyan Chatterjee y Daniel T. Trugman, 5 de junio de 2024. Naturaleza.
DOI: 10.1038/s41586-024-07518-6
La investigación fue apoyada por la Fundación Nacional de Ciencias. Además de Lee, Tsai y Hirth, el equipo también incluía a Avigyan Chatterjee y Daniel T. Trugman de la Universidad de Nevada, Reno.