Los físicos del RHIC están estudiando los cambios de fase de la materia nuclear a partir de colisiones de iones de oro para identificar un punto crítico en estas transformaciones. Su investigación, que recrea y examina la transición del plasma quark-gluón, un estado de la materia presente después del Big Bang, sugiere que las fluctuaciones en la formación de núcleos ligeros podrían indicar este punto crítico. Algunas discrepancias en los datos sugieren posibles fluctuaciones, pero se necesita más investigación para confirmar un hallazgo.
El análisis de los núcleos ligeros de las colisiones de iones de oro ofrece información sobre los cambios de fase de la materia primordial.
Los físicos que analizan los datos de las colisiones de iones de oro en el Colisionador de iones pesados relativistas (RHIC), una instalación de usuario de la Oficina de Ciencias para la investigación de física nuclear del Departamento de Energía de los EE. UU. (DOE) en el Laboratorio Nacional de Brookhaven del DOE, están buscando evidencia -llamado punto crítico en la forma en que el material nuclear pasa de una fase a otra.
Nuevos hallazgos de los miembros de la colaboración RHIC STAR publicados en una revista
The “heart” of the STAR detector at Brookhaven’s Relativistic Heavy Ion Collider is the Time Projection Chamber, which tracks and identifies particles emerging from ion collisions. Credit: Brookhaven National Laboratory
“You can imagine the nuclear phase diagram as a bridge connecting the past—the Big Bang and the early universe—to visible matter as we know it today, and even neutron stars,” said Xiaofeng Luo, a member of RHIC’s STAR Collaboration from Central China Normal University (CCNU), who led a group of students in this analysis. “It’s important scientifically and to human understanding of where we come from.”
Critical point search party
RHIC’s collisions recreate a hot, dense state of matter that existed for a tiny fraction of a second right after the Big Bang some 14 billion years ago. This matter, called a quark-gluon plasma (QGP), is a soup of “free” quarks and gluons—the building blocks of the protons and neutrons that make up atomic nuclei. Colliding heavy ions at various energies allows RHIC physicists to study how the collisions create this primordial soup and how it transitions back into ordinary nuclear matter.
To look for signs of a critical point—where the type of transition from QGP to ordinary matter changes from a smooth crossover (where two phases coexist, as when butter gradually melts on a warm day) to a sudden shift (like water suddenly boiling)—the scientists look for fluctuations in things they measure coming out of the collisions.
Mapping nuclear phase changes is like studying how water changes under different conditions of temperature and pressure (net baryon density for nuclear matter). RHIC’s collisions “melt” protons and neutrons to create quark-gluon plasma (QGP). STAR physicists are exploring collisions at different energies, turning the “knobs” of temperature and baryon density, to look for signs of a “critical point.” Credit: Brookhaven National Laboratory
A previous study found tantalizing signs of the type of fluctuations scientists would expect around the critical point by looking at the number of net protons produced at the various collision energies. Protons, each made of three quarks, form as the QGP cools, and can serve as stand-ins for the overall baryon density (baryons being all particles made of three quarks, which also includes neutrons).
Scientists expect that as the baryon density of matter increases, it’s more likely these protons and neutrons will coalesce, or come together, to form lightweight nuclei when the QGP “freezes out.” So, in this study, they tried to track the yield of one type of lightweight nucleus known as a triton—made of one proton and two neutrons. Seeing fluctuation patterns in triton production might help them zero in on the critical point.
As in the previous study, the data were collected by the Solenoidal Tracker at RHIC, a particle detector known as STAR, during phase one of the Beam Energy Scan (BES-I). This program recorded snapshots of collisions at various energies and temperatures from 2010 to 2017, capturing changes in the numbers and types of particles streaming out. This new analysis builds upon a paper that Brookhaven physicist Zhangbu Xu and colleagues published in 2017, predicting that the yield ratio of light nuclei such as tritons should be tied to the critical point.
Tracking fluctuations in the yield ratio of lightweight nuclei such as deuterons and tritons emerging from collisions within the STAR detector should be sensitive to a critical point. The data (red points) mostly match predictions (shaded areas), but two outlying points may be signs of the types of fluctuations scientists expect to see around the critical point. Credit: STAR Collaboration
“The formation of these light nuclei requires a certain baryon density,” said Dingwei Zhang, a member of RHIC’s STAR Collaboration and PhD student at CCNU. “If the system is approaching the critical point, the baryon density fluctuates a lot. So, we wanted to see through this analysis if we will see the fluctuations, therefore pin down the critical point.”
The data at most of the collision energies analyzed matched theorists’ models of how new nuclei would form as protons and neutrons come together through coalescence. But at two points—from collisions at 19.6 billion election volts (GeV) and 27 GeV—the data jumped out of the baseline predicted by the model, hinting at those coveted fluctuations.
The points offer a combined significance that still falls below the level required to claim a physics discovery.
“We hoped this analysis would be sensitive to the critical point,” Luo said. “We are very happy to see these outliers here and it’s certainly encouraging. Eventually, if the critical point exists in the energy range we covered, all these observables should give a consistent signal.”
Researchers are looking forward to seeing what analyses of a plethora of additional collision data will show. In 2021, the STAR collaboration successfully completed the second phase of the Beam Energy Scan (BES II), which captured gold smashup snapshots at various RHIC energies, including the lowest energy of 3 GeV.
“We hope that the BES II data will help us enhance the sensitivity to a critical point signal,” Luo said. “With higher statistics, we may be able to reach the level of significance required to claim a discovery. And that would be big.”
Reference: “Beam Energy Dependence of Triton Production and Yield Ratio (Nt×Np/N2d) in Au+Au Collisions at RHIC” by M. I. Abdulhamid et al. (STAR Collaboration), 16 May 2023, Physical Review Letters. DOI: 10.1103/PhysRevLett.130.202301
The research was funded by the DOE Office of Science (NP), the U.S. National Science Foundation, and a range of international organizations and agencies listed in the scientific paper.
SpaceX puso en órbita otro lote de sus satélites de Internet Starlink desde la Costa Espacial de Florida esta tarde (30 de octubre).
Un cohete Falcon 9 coronado por 23 naves espaciales Starlink despegó de la estación espacial de Cabo Cañaveral hoy a las 17:10 EDT (21:10 GMT).
La primera etapa del Falcon 9 regresó a la Tierra para un aterrizaje vertical aproximadamente ocho minutos después del despegue, como estaba previsto. Aterrizó en el dron SpaceX “A Shortfall of Gravitas”, estacionado en el Océano Atlántico.
Este fue el decimocuarto lanzamiento y aterrizaje de este propulsor en particular, según un Descripción de la misión SpaceX.
La etapa superior del Falcon 9 continuó su viaje hacia el cielo. Desplegará los 23 satélites Starlink en la órbita terrestre baja (LEO) aproximadamente 64 minutos después del despegue, si todo va según lo planeado.
SpaceX ya ha lanzado más de 100 misiones Falcon 9 en 2024, aproximadamente dos tercios de las cuales están dedicadas a construir la megaconstelación Starlink.
La compañía de Elon Musk opera actualmente cerca de 6.500 satélites Starlink en LEO, y cada vez hay más satélites en crecimiento, como muestra el despegue de hoy.
La NASA ha perfeccionado su lista de posibles lugares de aterrizaje cerca del polo sur de la Luna para su Misión Artemisa 3cuyo objetivo es devolver a los astronautas a la superficie lunar no antes de 2026.
Los nueve sitios preseleccionados, que fueron publicados por la NASA el lunes 28 de octubre, son geológicamente diversos y cada uno tiene el potencial de proporcionar nueva información sobre planetas rocososrecursos lunares y la historia de nuestra sistema solarsegún un declaración por la agencia.
Las ubicaciones específicas en las regiones candidatas se seleccionarán después de que se seleccionen las fechas objetivo del lanzamiento de Artemis 3, según el comunicado, porque estas fechas «dictarán las trayectorias orbitales y las condiciones ambientales de la superficie».
«Cualquiera de estas regiones de aterrizaje nos permitirá hacer ciencia asombrosa y hacer nuevos descubrimientos», dijo Sarah Noble, geóloga lunar de la División de Ciencias Planetarias de la sede de la NASA en Washington, DC, en el comunicado de prensa.
Relacionado: Los astronautas de la NASA prueban el ascensor SpaceX Starship para futuros alunizajes
La misión Artemis 3 tiene como objetivo aterrizar lo suficientemente cerca de áreas cercanas al polo sur de la Luna que nunca ven la luz del sol. En esos lugares, conocidos como regiones persistentemente sombreadas, los científicos sospechan que las capas de hielo que no se han distribuido durante miles de millones de años podrían contener pistas sobre la historia del sistema solar y proporcionar a los astronautas sistemas de soporte vital y combustible para cohetes.
Los MNT en regiones actualizadas también admiten aterrizajes por EspacioXdel Starship Human Landing System (HLS), que transportará a dos astronautas desde nave espacial orión atracado en órbita lunar en la superficie de la luna. EL Astronave HLS está diseñado para servir como hábitat para los miembros de la tripulación durante su estadía de una semana en la luna. También está previsto enviarlos de regreso a Orión cuando el tiempo venir.
¡Las últimas noticias espaciales, las últimas actualizaciones sobre lanzamientos de cohetes, eventos de observación del cielo y mucho más!
El contrato de SpaceX con NASA requiere que ejecute con éxito un aterrizaje de demostración sin tripulación en la superficie de la Luna antes de transportar astronautas en la misión tripulada Artemis 3. Retrasos en el desarrollo de Starship y también. problemas con el escudo térmico con la cápsula de Orión retrasó la misión Artemis 3 hasta al menos septiembre de 2026aproximadamente un año después de su fecha de lanzamiento original.
A principios de este año, la NASA nota Starship ha superado con éxito varias pruebas de sistemas de acoplamiento, así como más de 30 hitos relacionados con su desarrollo HLS. El siguiente paso crítico es que Starship HLS demuestre la transferencia de propulsor en órbita, ya que Starship no puede volar directamente a la Luna y debe repostar combustible en órbita. Tierra órbita con propulsor proporcionado por una rápida sucesión de al menos 10 lanzamientos de Starship antes de zarpar hacia la luna.
Al mismo tiempo, el desarrollo de un componente crítico por boeing para el nuevo de la NASA Sistema de lanzamiento espacial (SLS), llamado Bloque 1B –un cohete robusto diseñado para aumentar la cantidad de carga que SLS puede entregar a la Luna– cayó recientemente bajo una nube de incertidumbre cuando el gigante aeroespacial supuestamente consideró vender su negocio espacial en un contexto de crecientes problemas financieros. .
A informe exclusivo El Wall Street Journal señaló el viernes pasado (25 de octubre) que las discusiones de Boeing sobre la venta de sus operaciones espaciales, una medida encabezada por el nuevo director ejecutivo de la compañía, Kelly Ortberg, se encontraban «en una etapa temprana». Tampoco está claro qué parte del negocio podría venderse y es posible que la empresa mantenga su papel en el desarrollo de SLS, señala el informe.
Se espera que el vuelo inaugural del SLS Bloque 1B sea la misión de alunizaje Artemis 4, ahora programada para finales de 2028.
Mattel, el fabricante de juguetes detrás de grandes marcas como Barbie y Hot Wheels, está modernizando sus propiedades inmobiliarias, trasladando sus estudios y su centro de diseño a nuevos hogares.
La compañía, con sede en El Segundo, planea trasladar sus estudios a un edificio recientemente renovado de 60,000 pies cuadrados para 2025. Mattel firmó un acuerdo de varios años para arrendar el espacio de oficinas en 831 S. Douglas St.
El edificio, ubicado cerca de la actual sede de Mattel en Continental Boulevard, incluye estudios que la compañía utilizará para tomar fotografías y videos para promocionar sus productos, así como un patio con fogatas, una parrilla y un área de cocina. El edificio está cerca de otros servicios, incluidos restaurantes, un club deportivo de alto nivel, hoteles y tiendas. Durante los últimos 30 años, Mattel ha alojado sus estudios en su campus, que incluye varios edificios.
La transacción inmobiliaria es parte de los esfuerzos de Mattel para renovar sus oficinas, ya que la compañía apunta a impulsar la productividad y la creatividad en el lugar de trabajo y al mismo tiempo atraer nuevos empleados. A medida que los trabajadores comienzan a regresar a la oficina después de la pandemia de COVID-19, las empresas están tratando de hacer que la oficina sea más atractiva para los empleados acostumbrados al trabajo remoto.
El edificio industrial, que forma parte del campus de Continental Park de Continental Development Corp., fue transformado recientemente para incluir un área de producción de estudio para satisfacer las necesidades creativas de Mattel.
«Los empleadores han estado trabajando para darles a sus empleados razones para querer regresar a la oficina e interactuar con sus pares», dijo Bob Tarnofsky, vicepresidente ejecutivo de bienes raíces de Continental Development. «Las comodidades que ofrecen son muy superiores a las que normalmente veíamos antes de COVID». »
A medida que los empleadores reconsideran el futuro del trabajo, no es raro que las empresas firmen contratos de arrendamiento a más corto plazo, dijo Tarnofsky. Mattel, sin embargo, firmó un contrato de arrendamiento a largo plazo. Se negó a decir cuánto pagó Mattel por el contrato de arrendamiento y cuánto dura.
Este año, Mattel también anunció que trasladaría su centro de diseño, ubicado en Mariposa Avenue durante más de tres décadas, a un edificio recientemente renovado en 2026. El centro, donde los empleados diseñan cabello, ropa y otras piezas de juguete, se ubicará en un espacio de oficinas de 167,767 pies cuadrados conocido como Grand + Nash en 2160 E. Grand Ave. Mattel compró el espacio por 59 millones de dólares a New York Life Insurance.
«Nos estamos embarcando en una importante modernización interior de nuestra sede en 333 Continental Boulevard, infundida con los mismos principios de diseño e inspirada en los esfuerzos de modernización de oficinas de Mattel en todo el mundo», David Traughber, vicepresidente senior de finanzas y director de Mattel. bienes raíces globales, dijo en un comunicado.
Los edificios que actualmente albergan el centro de diseño y operaciones de estudio de Mattel son instalaciones arrendadas que la compañía dejará libres.
En diciembre de 2023, Mattel tenía aproximadamente 33.000 empleados en más de 35 países de todo el mundo, según el informe anual de la empresa. La empresa tiene aproximadamente 2000 empleados en El Segundo y ofrece a sus empleados un ambiente de trabajo híbrido.