Físicos del MIT han detectado una partícula híbrida en un material magnético bidimensional inusual. La partícula híbrida es una mezcla de un electrón y un fonón. Crédito: Christine Daniloff, MIT
El descubrimiento podría ofrecer un camino hacia dispositivos electrónicos más pequeños y rápidos.
En el mundo de las partículas, a veces dos son mejores que uno. Tomemos, por ejemplo, los pares de electrones. Cuando dos electrones se unen, pueden deslizarse a través del material sin fricción, dándole al material propiedades superconductoras especiales. Estos pares de electrones, o pares de Cooper, son una especie de partícula híbrida, un compuesto de dos partículas que se comportan como una sola, con propiedades superiores a la suma de sus partes.
Ahora CON Los físicos han detectado otro tipo de partícula híbrida en un material magnético bidimensional inusual. Determinaron que la partícula híbrida es una combinación de un electrón y un fonón (una cuasipartícula que se produce a partir de los átomos en vibración de un material). Cuando midieron la fuerza entre el electrón y el fonón, encontraron que el pegamento, o enlace, era 10 veces más fuerte que cualquier otro híbrido electrón-fonón conocido hasta la fecha.
El enlace excepcional de la partícula sugiere que su electrón y fonón podrían sintonizarse en tándem; por ejemplo, cualquier cambio en el electrón debería afectar al fonón y viceversa. En principio, una excitación electrónica, como voltaje o luz, aplicada a la partícula híbrida podría estimular al electrón como lo haría normalmente, y también afectar al fonón, lo que influye en las propiedades estructurales o magnéticas de un material. Tal control dual podría permitir a los científicos aplicar voltaje o luz a un material para ajustar no solo sus propiedades eléctricas, sino también su magnetismo.
Impresión artística de los electrones ubicados en los orbitales interactuando fuertemente con las ondas vibratorias de la red (fonones). La estructura lobular representa la nube de electrones de iones de níquel en NiPS3, también conocidos como orbitales. Las ondas que emanan de la estructura orbital representan oscilaciones de fonones. Las bandas brillantes indican la formación de un estado enlazado entre los electrones y las vibraciones de la red. Crédito: Emre Ergecen
Los resultados son particularmente relevantes, ya que el equipo identificó la partícula híbrida en el trisulfuro de fósforo y níquel (NiPS3), un material bidimensional que ha suscitado recientemente interés por sus propiedades magnéticas. Si estas propiedades pudieran manipularse, por ejemplo a través de las partículas híbridas recién detectadas, los científicos creen que el material algún día podría ser útil como un nuevo tipo de semiconductor magnético, que podría convertirse en una electrónica más pequeña, más rápida y más eficiente energéticamente. .
“Imagínese si pudiéramos estimular un electrón y hacer reaccionar el magnetismo”, dice Nuh Gedik, profesor de física en el MIT. “Entonces podrías crear dispositivos que sean muy diferentes de cómo funcionan hoy. «
Gedik y sus colegas publicaron sus resultados el 10 de enero de 2022 en la revista Naturaleza Comunicación. Sus coautores incluyen a Emre Ergeçen, Batyr Ilyas, Dan Mao, Hoi Chun Po, Mehmet Burak Yilmaz y Senthil Todadri en el MIT, así como a Junghyun Kim y Je-Geun Park en la Universidad Nacional de Seúl en Corea.
Hojas de partículas
El campo de la física moderna de la materia condensada se centra, en parte, en la búsqueda de interacciones en la materia a nanoescala. Tales interacciones, entre átomos de un material, electrones y otras partículas subatómicas, pueden conducir a resultados sorprendentes, como la superconductividad y otros fenómenos exóticos. Los físicos investigan estas interacciones condensando sustancias químicas en superficies para sintetizar láminas de materiales bidimensionales, que podrían ser tan delgadas como una capa atómica.
En 2018, un grupo de investigación en Corea descubrió interacciones inesperadas en hojas sintetizadas de NiPS3un material bidimensional que se convierte en antiferromagnético a temperaturas muy bajas del orden de 150 Kelvin, o -123 grados Celsius. La microestructura de un antiferromagnético se asemeja a una red de panal de átomos cuyos espines son opuestos a los de su vecino. Por el contrario, un material ferromagnético está formado por átomos cuyos espines están alineados en la misma dirección.
Al sondear NiPS3este grupo descubrió que la excitación exótica se vuelve visible cuando el material se enfría por debajo de su transición antiferromagnética, aunque la naturaleza exacta de las interacciones responsables de esto no está clara. Otro grupo encontró signos de una partícula híbrida, pero sus componentes exactos y su relación con esta excitación exótica tampoco estaban claros.
Gedik y sus colegas se preguntaron si podrían detectar la partícula híbrida y desentrañar las dos partículas que componen el conjunto, capturando sus movimientos característicos con un láser ultrarrápido.
Magnéticamente visible
Normalmente, el movimiento de los electrones y otras partículas subatómicas es demasiado rápido para obtener una imagen, incluso con la cámara más rápida del mundo. El desafío, dice Gedik, es similar a tomar una foto de una persona corriendo. La imagen resultante es borrosa porque el obturador de la cámara, que deja pasar la luz para capturar la imagen, no es lo suficientemente rápido y la persona sigue corriendo en el cuadro antes de que el obturador pueda tomar una foto nítida.
Para solucionar este problema, el equipo utilizó un láser ultrarrápido que emite pulsos de luz que duran solo 25 femtosegundos (un femtosegundo es 1 millonésima de 1 billonésima de segundo). Dividieron el pulso del láser en dos pulsos separados y los dirigieron a una muestra de NiPS.3. Los dos pulsos se establecieron con un ligero retraso entre sí, de modo que el primero estimuló o «pateó» la muestra, mientras que el segundo recogió la respuesta de la muestra, con una resolución temporal de 25 femtosegundos. De esta forma, pudieron crear “películas” ultrarrápidas a partir de las cuales se podían deducir las interacciones de las diferentes partículas dentro del material.
En particular, midieron la cantidad precisa de luz reflejada por la muestra en función del tiempo entre los dos pulsos. Este reflejo debería cambiar de alguna manera si hay partículas híbridas presentes. Se ha encontrado que este es el caso cuando la muestra se ha enfriado por debajo de 150 Kelvin, cuando el material se vuelve antiferromagnético.
“Descubrimos que esta partícula híbrida solo era visible por debajo de cierta temperatura, cuando se activa el magnetismo”, explica Ergeçen.
Para identificar los constituyentes específicos de la partícula, el equipo varió el color o la frecuencia del primer láser y encontró que la partícula híbrida era visible cuando la frecuencia de la luz reflejada estaba alrededor de un tipo particular de transición que se sabe que ocurre cuando un el electrón se mueve entre dos orbitales d. También observaron el espaciado del patrón periódico visible en el espectro de la luz reflejada y descubrieron que correspondía a la energía de un tipo específico de fonón. Esto aclaró que la partícula híbrida está formada por excitaciones de electrones del orbital d y este fonón específico.
Realizaron un modelado adicional basado en sus mediciones y descubrieron que la fuerza que une el electrón al fonón es aproximadamente 10 veces más fuerte que lo que se ha estimado para otros híbridos electrón-fonón conocidos.
“Una forma potencial de aprovechar esta partícula híbrida es que podría permitirle emparejarse con uno de los componentes y sintonizar indirectamente el otro”, dijo Ilyas. «De esa manera podrías cambiar las propiedades de un material, como el estado magnético del sistema».
Referencia: «Estados unidos de fonones y electrones oscuros iluminados magnéticamente en un antiferromagnético de van der Waals» por Emre Ergeçen, Batyr Ilyas, Dan Mao, Hoi Chun Po, Mehmet Burak Yilmaz, Junghyun Kim, Je-Geun Park, T. Senthil y Nuh Gedik , 10 de enero de 2022, Naturaleza Comunicación. DOI: 10.1038 / s41467-021-27741-3
Esta investigación fue financiada, en parte, por el Departamento de Energía de EE. UU. y la Fundación Gordon y Betty Moore.
SpaceX puso en órbita otro lote de sus satélites de Internet Starlink desde la Costa Espacial de Florida esta tarde (30 de octubre).
Un cohete Falcon 9 coronado por 23 naves espaciales Starlink despegó de la estación espacial de Cabo Cañaveral hoy a las 17:10 EDT (21:10 GMT).
La primera etapa del Falcon 9 regresó a la Tierra para un aterrizaje vertical aproximadamente ocho minutos después del despegue, como estaba previsto. Aterrizó en el dron SpaceX “A Shortfall of Gravitas”, estacionado en el Océano Atlántico.
Este fue el decimocuarto lanzamiento y aterrizaje de este propulsor en particular, según un Descripción de la misión SpaceX.
La etapa superior del Falcon 9 continuó su viaje hacia el cielo. Desplegará los 23 satélites Starlink en la órbita terrestre baja (LEO) aproximadamente 64 minutos después del despegue, si todo va según lo planeado.
SpaceX ya ha lanzado más de 100 misiones Falcon 9 en 2024, aproximadamente dos tercios de las cuales están dedicadas a construir la megaconstelación Starlink.
La compañía de Elon Musk opera actualmente cerca de 6.500 satélites Starlink en LEO, y cada vez hay más satélites en crecimiento, como muestra el despegue de hoy.
La NASA ha perfeccionado su lista de posibles lugares de aterrizaje cerca del polo sur de la Luna para su Misión Artemisa 3cuyo objetivo es devolver a los astronautas a la superficie lunar no antes de 2026.
Los nueve sitios preseleccionados, que fueron publicados por la NASA el lunes 28 de octubre, son geológicamente diversos y cada uno tiene el potencial de proporcionar nueva información sobre planetas rocososrecursos lunares y la historia de nuestra sistema solarsegún un declaración por la agencia.
Las ubicaciones específicas en las regiones candidatas se seleccionarán después de que se seleccionen las fechas objetivo del lanzamiento de Artemis 3, según el comunicado, porque estas fechas «dictarán las trayectorias orbitales y las condiciones ambientales de la superficie».
«Cualquiera de estas regiones de aterrizaje nos permitirá hacer ciencia asombrosa y hacer nuevos descubrimientos», dijo Sarah Noble, geóloga lunar de la División de Ciencias Planetarias de la sede de la NASA en Washington, DC, en el comunicado de prensa.
Relacionado: Los astronautas de la NASA prueban el ascensor SpaceX Starship para futuros alunizajes
La misión Artemis 3 tiene como objetivo aterrizar lo suficientemente cerca de áreas cercanas al polo sur de la Luna que nunca ven la luz del sol. En esos lugares, conocidos como regiones persistentemente sombreadas, los científicos sospechan que las capas de hielo que no se han distribuido durante miles de millones de años podrían contener pistas sobre la historia del sistema solar y proporcionar a los astronautas sistemas de soporte vital y combustible para cohetes.
Los MNT en regiones actualizadas también admiten aterrizajes por EspacioXdel Starship Human Landing System (HLS), que transportará a dos astronautas desde nave espacial orión atracado en órbita lunar en la superficie de la luna. EL Astronave HLS está diseñado para servir como hábitat para los miembros de la tripulación durante su estadía de una semana en la luna. También está previsto enviarlos de regreso a Orión cuando el tiempo venir.
¡Las últimas noticias espaciales, las últimas actualizaciones sobre lanzamientos de cohetes, eventos de observación del cielo y mucho más!
El contrato de SpaceX con NASA requiere que ejecute con éxito un aterrizaje de demostración sin tripulación en la superficie de la Luna antes de transportar astronautas en la misión tripulada Artemis 3. Retrasos en el desarrollo de Starship y también. problemas con el escudo térmico con la cápsula de Orión retrasó la misión Artemis 3 hasta al menos septiembre de 2026aproximadamente un año después de su fecha de lanzamiento original.
A principios de este año, la NASA nota Starship ha superado con éxito varias pruebas de sistemas de acoplamiento, así como más de 30 hitos relacionados con su desarrollo HLS. El siguiente paso crítico es que Starship HLS demuestre la transferencia de propulsor en órbita, ya que Starship no puede volar directamente a la Luna y debe repostar combustible en órbita. Tierra órbita con propulsor proporcionado por una rápida sucesión de al menos 10 lanzamientos de Starship antes de zarpar hacia la luna.
Al mismo tiempo, el desarrollo de un componente crítico por boeing para el nuevo de la NASA Sistema de lanzamiento espacial (SLS), llamado Bloque 1B –un cohete robusto diseñado para aumentar la cantidad de carga que SLS puede entregar a la Luna– cayó recientemente bajo una nube de incertidumbre cuando el gigante aeroespacial supuestamente consideró vender su negocio espacial en un contexto de crecientes problemas financieros. .
A informe exclusivo El Wall Street Journal señaló el viernes pasado (25 de octubre) que las discusiones de Boeing sobre la venta de sus operaciones espaciales, una medida encabezada por el nuevo director ejecutivo de la compañía, Kelly Ortberg, se encontraban «en una etapa temprana». Tampoco está claro qué parte del negocio podría venderse y es posible que la empresa mantenga su papel en el desarrollo de SLS, señala el informe.
Se espera que el vuelo inaugural del SLS Bloque 1B sea la misión de alunizaje Artemis 4, ahora programada para finales de 2028.
Mattel, el fabricante de juguetes detrás de grandes marcas como Barbie y Hot Wheels, está modernizando sus propiedades inmobiliarias, trasladando sus estudios y su centro de diseño a nuevos hogares.
La compañía, con sede en El Segundo, planea trasladar sus estudios a un edificio recientemente renovado de 60,000 pies cuadrados para 2025. Mattel firmó un acuerdo de varios años para arrendar el espacio de oficinas en 831 S. Douglas St.
El edificio, ubicado cerca de la actual sede de Mattel en Continental Boulevard, incluye estudios que la compañía utilizará para tomar fotografías y videos para promocionar sus productos, así como un patio con fogatas, una parrilla y un área de cocina. El edificio está cerca de otros servicios, incluidos restaurantes, un club deportivo de alto nivel, hoteles y tiendas. Durante los últimos 30 años, Mattel ha alojado sus estudios en su campus, que incluye varios edificios.
La transacción inmobiliaria es parte de los esfuerzos de Mattel para renovar sus oficinas, ya que la compañía apunta a impulsar la productividad y la creatividad en el lugar de trabajo y al mismo tiempo atraer nuevos empleados. A medida que los trabajadores comienzan a regresar a la oficina después de la pandemia de COVID-19, las empresas están tratando de hacer que la oficina sea más atractiva para los empleados acostumbrados al trabajo remoto.
El edificio industrial, que forma parte del campus de Continental Park de Continental Development Corp., fue transformado recientemente para incluir un área de producción de estudio para satisfacer las necesidades creativas de Mattel.
«Los empleadores han estado trabajando para darles a sus empleados razones para querer regresar a la oficina e interactuar con sus pares», dijo Bob Tarnofsky, vicepresidente ejecutivo de bienes raíces de Continental Development. «Las comodidades que ofrecen son muy superiores a las que normalmente veíamos antes de COVID». »
A medida que los empleadores reconsideran el futuro del trabajo, no es raro que las empresas firmen contratos de arrendamiento a más corto plazo, dijo Tarnofsky. Mattel, sin embargo, firmó un contrato de arrendamiento a largo plazo. Se negó a decir cuánto pagó Mattel por el contrato de arrendamiento y cuánto dura.
Este año, Mattel también anunció que trasladaría su centro de diseño, ubicado en Mariposa Avenue durante más de tres décadas, a un edificio recientemente renovado en 2026. El centro, donde los empleados diseñan cabello, ropa y otras piezas de juguete, se ubicará en un espacio de oficinas de 167,767 pies cuadrados conocido como Grand + Nash en 2160 E. Grand Ave. Mattel compró el espacio por 59 millones de dólares a New York Life Insurance.
«Nos estamos embarcando en una importante modernización interior de nuestra sede en 333 Continental Boulevard, infundida con los mismos principios de diseño e inspirada en los esfuerzos de modernización de oficinas de Mattel en todo el mundo», David Traughber, vicepresidente senior de finanzas y director de Mattel. bienes raíces globales, dijo en un comunicado.
Los edificios que actualmente albergan el centro de diseño y operaciones de estudio de Mattel son instalaciones arrendadas que la compañía dejará libres.
En diciembre de 2023, Mattel tenía aproximadamente 33.000 empleados en más de 35 países de todo el mundo, según el informe anual de la empresa. La empresa tiene aproximadamente 2000 empleados en El Segundo y ofrece a sus empleados un ambiente de trabajo híbrido.